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Abstract Enzyme action was investigated by assuming the occurrence of differ-
ent states of enzyme-substrate affinities. These states were considered to involve
enzyme species with distinct abilities to form reaction product. The results obtained
showed strong agreement with the experimental data for the action of peroxidase.
This approach provides a powerful tool for predicting the kinetic behavior of other
enzymatic processes in conditions not described before. An additional feature of this
approach is the ability to characterize processes at any enzyme-substrate concentration
ratio, including high enzyme-substrate ratios and enzyme inhibition by substrate or
product. This proposal can also be used in systems with heterogeneity concerning the
investigated enzyme.

Keywords Enzyme kinetics · HMM and MWC models · Michaelis–Menten
kinetics · Two-state model

1 Introduction

The study of enzyme action has been a very fruitful field of research ever since the
pioneering work of Bohr, Henry, Michaelis–Menten and others nearly a century ago
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[1]. Since these initial studies, our knowledge of the mechanisms of enzyme action
(activation, inhibition and modulation by allosteric factors) has expanded considerably,
as has our understanding of the role of these proteins in a variety of physiological
processes, including metabolic pathways, acid-basic control and oxygen transport. In
the latter case, the process of oxygen transport by hemoglobin, one of most studied
proteins, is considered by many to be an example of enzyme action as well as a
classic case of allosteric control by ions and organic compounds involving quaternary
structural modifications [2–6].

The initial studies by Michaelis and Menten [7] of a kinetic model assumed a fast
step involving an association between substrate (S) and enzyme (E) to form a com-
plex (ES), followed by a slow step in which the complex dissociated to yield product
(P) and free enzyme in a unidirectional process; this kinetic analysis focused on the
initial process and neglected the presence of products. Subsequent studies extended
the process of modelling enzyme kinetics, with implications for microbial growth
[8]. Further studies demonstrated that this model could furnish valuable information
on enzyme parameters of catalysis, such as the maximum velocity of reaction (Vm)
and the Michaelis–Menten constant (KM) of the reaction, parameters that provide
insights into the enzyme-substrate interaction. However, in most cases, these results
were based on steady-state conditions and situations where the enzyme-substrate con-
centration ratios were very low [9]. The validity of the traditional model was expanded
by excluding the steady-state constraint through the use of differential equation sys-
tems to explain the kinetics of the process. However, even in this case, enzyme action
remained dependent on low enzyme-substrate concentration ratios [9].

To address this issue, the influence of species concentrations in the overall reaction
was recently examined [10]. An additional approach to this problem was reported [11],
but in this case access to the enzyme profile at a low enzyme-substrate concentration
ratio involved considerations and equations that are not necessary when working with
extents of reaction [12]. The proposals of Tzafriri [13] and Schnell and Maini [14] gave
results compatible with those of Bispo et al. [12] but, as with other studies, the basic
equations of these models used the Michaelis–Menten equation and required additional
equations to introduce corrections. Since the second order nature of the differential
system of equations needs to be solved in order to assess the enzyme action at any
enzyme-substrate concentration ratio, all of the foregoing methods are only applicable
to a starting condition in which the rate constants of the Michaelis–Menten model are
needed to simulate the changes in species concentration [12].

In an attempt to overcome the shortcomings indicated above, in this report we
propose a new method for investigating enzyme action based on the assumption of
two enzyme structures in solution with different tendencies to bind substrate, namely,
a low (L) and a high (H) tendency. This approach incorporates the classic concepts
of enzyme kinetics [1,7,15] with advances in the steady-state transition involving
species with heterogeneous structures and states of affinity [2,16–22]. In this regard,
the classic Michaelis–Menten model has recently been extended to kinetic situations
beyond the steady-state condition [9]. The time-extended Eq. (34) of Bispo et al. [9]
is a true mathematical extension of the initial Michaelis–Menten and Biggs–Haldane
proposition that can be obtained by using Laplace transforms. Although our previous
approach introduced improvements to kinetic analysis [9], it nevertheless had some
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limitations. One of these was that it did not account for situations where the substrate
concentration changes with time and where the reaction product can inhibit the enzyme
in a process of feedback regulation.

Specifically, we studied the kinetics of potato peroxidase (POD). Peroxidases are
widely distributed in nature and consist of a family of isozymes that catalyze the same
or similar reactions [23]. These enzymes act on hydrogen peroxide as an electron
acceptor and oxidize a variety of donor compounds, frequently resulting in colored
end-products [24]. All POD contain identical heme groups but differ in their glycopro-
tein composition [25]. The POD of higher plants contains the ferriprotoporphyrin III
prosthetic group [26]. Peroxidase substrates, such as hydrogen peroxide and guaiacol,
frequently inhibit the enzyme, depending on their concentration [27].

In the present work, we studied peroxidase activity in a heterogeneous potato extract
that contained different POD species, but the approach described here can be extended
to investigate the mechanisms of enzyme action under any conditions, including high
enzyme-substrate concentration ratios. With appropriate adaptations, this procedure
can be applied to the characterization and optimization of biotechnological processes
such as microbial growth, fermentation and the association/dissociation of oligomers.

2 Materials and methods

2.1 Collection of crude enzyme

Potato was used as the source of POD. Initially, the fruit was washed in tap water,
peeled and chopped into small pieces. Fifty grams of fruit was homogenized in a
blender with 50 mL of 0.1 mol/L phosphate-buffered saline (1.0 mol/L NaCl), pH 6.0.
The mixture was then filtered successively through Black Ribbon Filter Grade 589/1
(12–25 μm) and Grade 40 (8μm) Whatman filter paper. The filtrate was stored at
−20◦C and used as a source of POD.

2.2 Determination of tetraguaiacol concentration

POD activity was assayed as described previously [28]. The substrate solution was
prepared daily by mixing 0.1 mL of guaiacol, 0.1 mL of H2O2 (30 %) and 99.8 mL of
potassium phosphate buffer (0.1 mol/L, pH 6.5), with different final concentrations of
guaiacol, depending on the experiment. The substrate was mixed well by shaking vig-
orously for a few minutes. The reaction mixture consisted of 0.2 mL of enzyme extract
and 3.3 mL of substrate solution in a quartz cuvette followed by stirring with a capil-
lary glass rod. Peroxidase activity was measured based on the increase in absorbance
at 470 nm using a spectrophotometer (Varian Cary 50 Probe). The reaction was mon-
itored for 3 min. All of the experiments were done four times for each experimental
condition and the average values were used for analysis. Enzyme activity was cal-
culated from the change in absorbance (�A) at 470 nm, using the equation: Activity
(U/L) = �A per min×T V ×103/ε×SV × P L , where �A per min is the change in
absorbance at 470 nm min−1, TV is the total volume (3.50 mL), ε is the molar extinction
of tetraguaiacol at 470 nm (2.66 × 104 L mol−1 cm−1), SV is the volume of enzyme
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solution (0.2 mL), PL is the light path length (1 cm) and 103 is a conversion factor
(mL to L). One unit of activity was defined as the amount of enzyme that produced
1 mmol of tetraguaiacol min−1 under the assay conditions described here.

2.3 Determination of enzyme concentration

The POD concentration was determined spectrophotometrically (Varian Cary 50
Probe spectrophotometer) at 403 nm using an extinction coefficient (ε196) of 1.02 ×
105 cm−1 L mol−1 [29]. The absorbance of the solution in the absence of sub-
strate (guaiacol) was ε196 = 0.025, which yielded an enzyme concentration of
2.45 × 10−7 mol/L.

2.4 Model description

Despite the recent extension of the Michaelis–Menten kinetic model beyond the
steady-state condition [9], this proposal still has some limitations. One of these
limitations is that the curve of product formation versus time, instead of being lin-
ear, as in the Michaelis–Menten model, or exponential, as in Eq. 34 of Bispo et
al. [9], is actually sigmoidal or hyperbolic, as observed in Bispo et al. [12] and in
the present report. In an attempt to address this limitation, improve the characteri-
zation of this model and enhance the possibility of predicting these situations, we
propose an approach based on the transition between two enzyme structures of low
(L) and high (H) substrate affinity in solution. These distinct affinity states involve
structures with weaker or stronger enzyme-substrate interactions and the process of
substrate conversion of each species (L and H) is initially assumed to be described
as

S + EH

K1H
� EH S

K2H
� EH + P

S + EL

K1L
� EL S

K2L
� EL + P

where S is the substrate, EL and EH correspond, respectively, to enzyme species of low
and high substrate affinity, EL S and EH S are the complex forms of these two species
and P is the reaction product. The time-dependence of the enzyme concentration from
each state can be given by the following exponential relationships, as in our previous
reports [30,31]:

[E]L (t) = exp (wL + kL t) (1)

[E]H (t) = exp (wH + kH t) (2)

where t is the reaction time and w and k are the parameters that coordinate the con-
centration dependence of the enzyme species at each reaction time. It is important to
note that since the presence of different enzyme species is assumed the proposal also
contemplates heterogeneous systems that involve different enzyme activities. On the
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other hand, a homogeneous system containing pure enzyme is not a guarantee of the
presence of only one species since the molecule can assume different conformational
states.

Assuming that the free enzyme fraction of each state of affinity can be given by

fL (t) = [E]L (t)

[E]L (t) + [E]H (t)
(3)

and

fH (t) = [E]H (t)

[E]L (t) + [E]H (t)
(4)

then it follows from Bispo et al. [30,31] that Eqs. (3) and (4) can be rewritten by
introducing Eqs. (1) and (2) to obtain

fL (t) = exp (ωL + kL t)

exp (ωL + kL t) + exp (ωH + kH t)
(5)

fH (t) = exp (ωH + kH t)

exp (ωL + kL t) + exp (ωH + kH t)
(6)

The theoretical expression for the average product formation should be modulated
by the concentration of species [E]L and [E]H in solution according to the expression

[P] = fL(t)PL + fH (t)PH (7)

where PL and PH are the limit concentrations of product generated by species L and
H , respectively. Using Eqs. (5) and (6), this can be written as

[P]= exp (ωL +kL t)

exp (ωL +kL t)+exp (ωH +kH t)
PH + exp (ωH +kH t)

exp (ωL +kL t)+exp (ωH +kH t)
PL

(8)

However, as in Bispo et al. [30,31], this fitting equation can be simplified to only
four parameters (w1, k1, PL and PH ) by dividing the numerator and denominator by
exp (ωH + kH t) which gives

[P] = exp (ω1 + k1t)

1 + exp (ω1 + k1t)
PH + 1

1 + exp (ω1 + k1t)
PL (9)

where, w1 = wL − wH and k1 = kL − kH

so that

fH (t) = exp (ω1 + k1 P)

1 + exp (ω1 + k1 P)
(10)

123



1502 J Math Chem (2014) 52:1497–1513

and

fL (t) = 1

1 + exp (ω1 + k1 P)
(11)

Examination of Eq. (9) shows that the values of the parameters of this equation can
be obtained by a nonlinear fit of the experimental data at each condition of substrate
concentration. Although the values for w1, k1, PL and PH will be constant with respect
to time, they will be substrate concentration-dependent, leading to the need for a second
adjustment in order to obtain a theoretical description of these results with respect to
substrate concentration and the surface plots as previously described [30,31].

From Eqs. (9) to (11) we can obtain all the parameters involved in catalysis, includ-
ing species concentration, Gibbs free energy, velocities of reactions and others. For
this, we start by using the extent of reaction to express the time-dependence of each
species in solution for this model of reaction, as previously described in detail for the
Michaelis–Menten model [9,12]:

[S] = cS − x1L (t) − x1H (t) (12)

[P] = x2L (t) + x2H (t) (13)

[EH ] = cE H − x1H (t) + x2H (t) (14)

[EL ] = cE L − x1L (t) + x2L (t) (15)

[EH S] = x1H (t) − x2H (t) (16)

[EL S] = x1L (t) − x2L (t) (17)

cET = cE H + cE H (18)

where cS is the substrate concentration at time zero, cET is the total enzyme con-
centration and cE L and cE H are the initial enzyme concentrations in states L and
H , respectively, and x represents the net extent of reaction for complex formation of
species L and H, x1L(t) and x1H (t), and the respective product formation, x2L(t) and
x2H (t). Since the fractions fL(t) and fH (t) are directly correlated with the amount
of product formation by species x2L(t) and x2H (t), from Eqs. (7) and (13), it follows
that

x2L (t) = fL (t) P(t) (19)

and

x2H (t) = fH (t) P(t) (20)

By applying Eqs. (14), (15), (18)–(20) to Eq. (3) we obtain

fL (t) = cE L − x1L (t) + fL (t) P(t)

cET − x1L (t) − x1H (t) + P (t)
(21)
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Fig. 1 a Gibbs free energy
diagram for an enzyme reaction
involving species with high (H)
and low (L) substrate affinities.
b Experimental data (symbols)
for product formation versus
time at different substrate
potentials (p[S] = − log([S])).
Lines nonlinear fitting of the
experimental data using Eq. (9)
at each p[S] condition

Rewriting Eq. (21) in terms of x1H (t) yields

x1H (t) = cET − cE L

fL (t)
+ fH (t)

fL (t)
x1L (t) (22)

At this point, the solution of the model will depend on the energy behavior assumed
by these two structures and the states of ligand affinity. Assuming that the Gibbs
free energy change of complex formation is more negative for species H than for
species L , as represented in Fig. 1, we can conclude that, starting from a hypothetical
reference level (Fig. 1, dashed line), the absolute values of �G1H will be higher than
those for �G1L , so with a higher substrate affinity for species H . In this model, the
Gibbs free energy of product formation of the high affinity species H is identical
to that for formation of the low affinity complex (�G2H = �G1L). An analogous
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situation applies to the low affinity species (�G2L = �G1H ). In cases involving more
than two species in solution and similar energetic considerations, the model can be
solved using considerations similar to those applied here. Thus, for the case where
�G j L = −RT ln(K j L), where j is the subscript of the specified reaction (�G1L ,
K1L , etc), it follows from the level diagram in Fig. 1a that

�G1H + �G2H = �G1L + �G2L (23)

and

�G1H = �G2L , as well as �G1L = �G2H (24)

As a consequence of Eqs. (23) and (24), we also obtain

K1H = [EH S]
[EH ][S] (25)

and

K1L = [EL S]
[EL ][S] (26)

such that

K1H

K1L
= [EH S]

[EH ][S] · [EL ][S]
[EL S] ,

And, from Eqs. (3) and (4),

[EH ]
[EL ] = fH (t)

fL(t)
. (27)

Considering that

K1H

K1L
= [EH S]

[EL S] .
fL(t)

fH (t)
≡ PH

PL
(28)

it follows from Eqs. (16) and (17) that

[EH S]
[EL S] = fH (t)PH

fL(t)PL
= x1H (t) − x2H (t)

x1L (t) − x2L (t)
= x1H (t) − fH (t)P (t)

x1L (t) − fL(t)P (t)
(29)

Solving for x1L(t) in Eq. (29), we obtain

x1L (t) = fL(t)PL

fH (t)PH
x1H (t) + (PH − PL)

PH
fL(t)P (t) (30)
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Applying Eq. (30) to Eq. (22), a complete solution for the proposed model is
reached, such that

x1H (t) = cET − cE L

fL (t)
+ PL

PH
x1H (t) + (PH − PL)

PH
fH (t)P (t) →

x1H (t) = PH

(PH − PL)

(
cET − cE L

fL (t)

)
+ fH (t)P (t) (31)

Therefore, from nonlinear adjustments of the experimental results for product for-
mation versus reaction time and by using the previous equations, a solution for the
proposed model of enzyme action is reached, with the possibility of predicting non-
experimental conditions of time and substrate concentrations. Importantly, other para-
meters that can be obtained by this approach and that are useful for understanding the
energy behavior during enzyme action are the Gibbs free energy of product formation
(�GS P ) and the Gibbs free energy of structure transition (�GH L), defined as

�GS P = −RT ln

( [P]
[S]4

)
(32)

�G H L = −RT ln

(
fL

fH

)
(33)

Here, the substrate concentration has the superscript 4 because of the stoichiometry
of the peroxidase reaction in which four molecules of guaiacol (substrate) are converted
into tetraguaiacol (product).

3 Results and discussion

Figure 1a shows the energy diagram corresponding to the proposed model. As can be
seen, the total energy change of conversion from substrate to product is equal to the sum
of both species (H and L), as discussed in the Materials and Methods section. This fig-
ure also shows that a consequence of such equivalence is that the first step involving the
formation of a complex containing species H is equal to the energy change from com-
plex to product formation of species L . This in turn means that these energy changes
are reciprocal and that the assumptions that �G1H + �G2H = �G1L + �G2L ,
�G1H = �G2L and �G2H = �G1L are explicit in the energy diagram. Figure 1b
shows the nonlinear fit (lines) of the experimental results (symbols) at each condition
of substrate potential defined as p[S] = − log[S]. The coefficient of determination
(r2) obtained from these nonlinear adjustments were all >0.967, indicating a good
agreement between the proposed model (Eq. 9) and the experimental data.

From the fitting procedure performed for each substrate potential, the parameters
of Eq. (9) were obtained (Fig. 2a–d symbols). In this case, to obtain the theoretical
surface profile of the experimental data, we performed a second nonlinear fitting of
the results shown in Fig. 2 (lines) that was similar to the first, but now with Eq. (9)
rewritten for the substrate potential dependence (p[S]) of each parameter. The aim
of this second adjustment was to obtain an analytical function able to express the
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Fig. 2 Fitting parameters obtained from Fig. 1b and Eq. (9) for a PH , b PL , c w1 and d k1 at each p[S]
condition. Lines second fitting function for each parameter

average behavior of the results gathered from the first adjustment for each parameter.
This procedure allowed simulation of the theoretical predictions of the model for
any condition, including those not contemplated experimentally. Consequently, it was
possible to determine a surface plot of the product formation in such a way that all
of the experimental data were considered to coincide with these theoretical results
(Fig. 3a). Comparison of Fig. 3b with Fig. 1b revealed a slight difference between
these figures, especially for the curves corresponding to p[S] values of 0.982 and
1.107, while the curves in Fig. 3b showed some deviation from the experimental
data (symbols). However, since the lines in Fig. 3b were based on a combination
of all the experimental data, they provided a better representation of the expected
behavior for the corresponding conditions than did the symbols, particularly when
a greater number of experiments was involved. Figure 3c, d show, respectively, the
surface response and the cuts in this surface for changes in the degree of substrate
conversion to product (αc) for POD activity. Analysis of these panels shows that for
the experimental conditions considered, the efficiency of this enzyme was very low,
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Fig. 3 a Surface plot of product formation as a function of substrate potential (p[S]) and reaction time.
b Experimental data (symbols) for product formation. Lines final surface adjustment of the experimental
data at different p[S] conditions. c Average degree of conversion (αc) of substrate into product as a function
of the substrate potential and reaction time. d Level lines of (αc) versus reaction time at distinct substrate
potentials

indicating low activity, especially at high substrate concentration or low p[S] values.
This finding suggested that the high substrate concentration acted as an inhibitor.

The velocity of product formation (Vp) was obtained by the derivation of product
formation with respect to time (Fig. 4). The surface plot of velocity with respect
to p[S] and time is shown in Fig. 4a and the respective level curves are shown in
Fig. 4b. Clearly, the curve shape differed from the hyperbolic shape normally obtained
with the classic Michaelis–Menten plot (not shown). Indeed, the results in Fig. 4b
demonstrate that with long reaction times there is a decrease in product formation,
even at high substrate concentration, with the velocity of reaction tending to zero.
According to this perspective, the time required to reach maximum velocity increases
from 19 to 60 s as p[S] increases from 0.81 to 1.58. Figure 4c shows the increase in
velocity with increasing substrate concentration (from high to low p[S]) that generates
a region of high reaction velocities over short intervals. However, this increase was not

123



1508 J Math Chem (2014) 52:1497–1513

Fig. 4 a Surface plot of the
velocity of product formation as
a function of the substrate
potential (p[S]) and reaction
time. b Level lines for the
velocity of product formation
(VP) versus reaction time at
distinct substrate potentials.
c Level diagram for the reaction
time versus substrate potentials
at distinct velocities of product
formation (VP)
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Fig. 5 a Surface plot of the Gibbs free energy of transition from H to L species (�GH L ) according to
Eq. (33). b Level lines for �GH L versus reaction time at distinct substrate potentials (p[S]). C Surface
plot of the Gibbs free energy of product formation (�GS P ) according to Eq. (32). d Level lines for �GS P
versus reaction time at distinct substrate potentials (p[S])

accompanied by an increase in the degree of substrate conversion (Fig. 3d), possibly
because of a higher enzyme ratio and initial substrate concentration.

Figure 5a, b shows the Gibbs free energy change of transition from species H to L
calculated using Eq. (33). There was an increase in the spontaneity of the transition
with time (a decrease in the values of �GHL). The increase in the slope of �GHL
versus time with increasing substrate concentration (lower p[S]) indicated a decrease
in the amount of species H in solution over time and this phenomenon was slower for
lower substrate concentrations. The Gibbs free energy change of product formation
(Eq. 32) is shown in Fig. 5c, d. For p[S] values <1 the process of product formation
was not spontaneous (�GSP > 0) over all the time intervals observed (Fig. 5d). As
p[S] increased, substrate formation became more spontaneous, thus corroborating the
initial observation that the substrate acts as an inhibitor.

The profile of substrate consumption during enzyme action is shown in Fig. 6.
There was no change in substrate concentration over time (Fig. 6b) and a more careful
analysis showed that this was so because of the low degree of substrate conversion
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Fig. 6 a Surface plot of substrate concentration as a function of reaction time and substrate potential.
b Level lines for [S] versus reaction time at distinct substrate potentials (p[S] = − log[S]). c Expanded
view of panel b at p[S] = 1. d Expanded view of panel b at p[S] = 1.4

observed for this enzyme. By expanding the scales of the graph in Fig. 6b for p[S]
values of 1 and 1.4 it is observed that this model accounted for substrate consumption
(Fig. 6c, d), a result not reported for other models in the literature. Thus, the use of Eq.
(12) and the respective equations for the extent of reaction provided prompt access to
these results without the need to solve differential systems of second order equations,
such as typically occurs when the classic Michaelis–Menten model is assumed. The
concept that the use of a low enzyme-substrate concentration ratio is a necessary
constraint in order to characterize enzyme kinetics is absent in the present proposal.
The exclusion of this limitation makes this approach applicable to a wide range of
conditions compared to other models based on steady-state conditions and a low
enzyme-substrate concentration ratio.

The present approach allows one to obtain the concentration of species from
Eqs. (12) to (17). Figure 7a shows the concentration of free enzyme in solution [E]T,
and Fig. 7b that of species [ES]T. The depletion of free enzyme and the consequent
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Fig. 7 a Surface plot of the total free enzyme concentration ([E]T ) as a function of the reaction time and
substrate potential. b Surface plot of the total substrate-enzyme concentration ([ES]T) as a function of the
reaction time and substrate potential. c Level lines for the total amount of high affinity enzyme ([EH]T)

versus reaction time at distinct substrate potentials (p[S]). d Level lines for the total amount of low affinity
enzyme ([EL]T) versus reaction time at distinct substrate potentials (p[S])

increase in complex [E]T can be seen. The decrease in the velocity of product forma-
tion shown in Fig. 4 indicated the formation of complex species with low affinity states
(L). According to the proposed model, Fig. 7c, d shows an increase in the concentra-
tion of species L and a decrease in species H , with an increase in the concentration of S
(or decrease in p[S], in this case from 1.20 to 0.90), i.e., the substrate had an inhibitory
effect on enzymatic activity. Moreover, the concentration of L and H species was
dependent on the initial substrate concentration, which remained constant over time.

4 Conclusions

In general, the kinetic models for enzyme activity reported in the literature describe
product formation with the classic constraints of steady-state conditions and high sub-
strate concentrations for systems that are homogeneous with regard to enzyme species.
Here, we have proposed an approach that does not require these constraints and have
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shown that the idea that a high substrate concentration allows an approximation to
the optimal conditions for enzyme action is not necessarily true, at least for some
enzymes. These findings demonstrate clearly that substrate-induced inhibition should
be taken into account during process optimization and that studying the mechanism of
action is facilitated by this more general model. Interestingly, the Michaelis–Menten
model presents limitations for describing enzyme kinetics, even for non-cooperative
and monomeric enzymes with a single active site. For instance, this classic model is
inadequate for describing the enzyme kinetics presented here, in which the profile of
product versus time is not linear. In addition, substrate (or product) inhibition is not
considered in the classic model. Thus, despite advances in the kinetic solution of the
Michaelis–Menten proposal, its analytical solution is still dependent on the imposition
of constraints that make it difficult to model and optimize enzyme kinetics, often to
the exclusion of important experimental results related to the initial and final reac-
tion times, for which a nonlinear profile is observed. Although the present approach
needs to be validated for other systems such as allosteric enzymes and for conditions
such as the presence of multiple cooperative binding sites and the presence of activa-
tors/inhibitors, the assumption of a heterogeneous systems involving the presence of
two or more enzyme structures and affinity states is an interesting and powerful tool
for understanding the mechanisms of enzyme action and for designing laboratory and
industrial equipment and processes.
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